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LETTER TO THE EDITOR 

Irreversible aggregation of clusters at high density 

H J Herrmannt and M KolbS 
t Service de Physique ThCorique, CEN Saclay, 91191 Gif-sur-Yvette Cedex, France 
$ Laboratoire de Physique de la Matikre Condensee, Ecole Polytechnique, 91 128 Palaiseau 
Cedex, France 

Received 8 August 1986 

Abstract. We consider two-dimensional clustering for a high density of clusters. We find 
that three regimes can be distinguished and give the criteria for crossover between them. 
The numerical value of the gelation threshold strongly depends on the system size. 

In recent years irreversible aggregation of matter has become a widely studied 
phenomenon. Numerous applications like the formation of colloids, soot and even 
clouds have been described by it. The subject has been reviewed on several occasions 

One of the prominent models used to study the formation of clusters through 
aggregation is ‘clustering of clusters’ [ 5 ] :  all clusters in the system simultaneously 
undergo a Brownian motion on a regular lattice. Whenever two clusters get as close 
as one lattice spacing from one another they merge irreversibly and form one larger 
cluster. In this way ever larger clusters are formed with time. It is by now well 
established that in the ‘flocculation regime’, i.e. when the distance between the clusters 
is much larger than their linear size, the clusters are fractals, which implies that their 
density decreases with their size like a power law [5-81. What happens, however, when 
the distance betwen the clusters is less than their radius [9]? This is the question we 
want to deal with in this letter. 

We consider the following model. At time t = 0 a fraction po of the sites of a square 
lattice of size L x L with periodic boundary conditions are occupied. If two occupied 
sites are nearest neighbours they belong to the same cluster. The initial density po 
must be less than the percolation threshold p o  = 0.592 75; otherwise there exists a 
spanning cluster before the clusters start to move. The number of occupied sites s that 
belong to a cluster is called its mass. The process of aggregation now is a repeated 
application of the following growth step. A cluster is chosen at random and moved 
with a probability proportional to sa by one lattice spacing in any of the four directions. 
a is a parameter of the model. For the case a = -a the smallest cluster is always 
chosen and is always moved. If after a move any site of the cluster becomes the nearest, 
neighbour to a site of another cluster the two clusters become one single cluster. This 
process is continued until only one cluster is left in the systemt. During the process 
several quantities are monitored: the total number of clusters N, the average cluster 

[ 1-41. 

t A film, based on numerical simulations, illustrating ‘clustering of clusters’ as studied here, has been written 
by M Kolb. 
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mass S = Z s2/2 s(the sums are over all the clusters), the mass of the largest cluster 
s,,,, the average number n of clusters that merge together per move and the average 
shortest distance A between two neighbouring clusters (asymptotically A and n are 
related through A a n-1 /2 ) .  The ‘time’ t is increased by N-I always when a cluster is 
picked-independent of whether it is moved or not (for a = -CO this definition of time 
is not physically meaningful as in reality one has to wait infinitely long between any 
two moves). 

Relevant to colloidal aggregation are negative values of a, i.e. when smaller clusters 
move faster than larger ones. In this letter we will consider two representative values, 
a = -2 and a = -CO. In figure 1 we show how n-’, the number of moves needed for 
one cluster merging, changes with time for different values of a and po. Clearly in all 
cases three regimes can be distinguished: for small times (regime I) the average shortest 
distance A between clusters increases and so does n-’; this is the flocculation regime 
where each cluster is fractal with a fractal dimension D = 1.43 (in d = 2). Then n-’ 
reaches a maximum at t l  and from there on clusters get closer to each other and n-’ 
decreases. In this regime I1 (the ‘compactification regime’) the individual clusters will 
lose their fractal character since their density cannot decrease beyond po when they 
become larger; every cluster feels the presence of the neighbours. This goes on until 
n-l  reaches a minimum at a time t 2 .  At this point the finite size of the lattice is felt: 
one cluster spans the system from side to side (gelation). From there on (regime 111) 
all the other clusters will move until they finally merge into the spanning cluster. The 
clusters close to the spanning cluster (which for a < 0 is practically immobile) aggregate 
quickly; the ones further away will need more time. So in this regime n-’ again will 
increase with time. After having described the different regimes of aggregation qualita- 
tively in this way we will devote the rest of this letter to analysing in more detail what 
happens at t l  and t 2 .  

The average shortest distance A between two clusters is given by the difference of 
the distance r between the centres of the clusters and their linear size R. r is given by 
r = LN-’ld,  where the average number of clusters N can be expressed as N = poLd / f .  
On the other hand one has asymptotically for fractal clusters R = c S ” ~  where c is a 
proportionality constant. This gives 

(1) 

As long as A > R, i.e. po< f(D-d)’D one is in regime I. Since 5 grows monotonically 
with time and D < d the distance A of equation (1) continually decreases. The time 
t l  is given in figure 1 by the maximum of n-’, i.e. when the two terms in equation (1) 
are of the same order. So at t l  

A = - R = p g l / d ~ l / d  - c s ’ / D  

a ( R l r ) d  (2) = p o f ( d - D ) / D  

is of order unity. y will be used as a scaling variable that distinguishes flocculation 
(regime I) where y<< 1 from the compactification (regime 11) where y >> 1. For times 
larger than t , ,  in regime 11, a new phenomenon occurs: since the distance between 
the clusters cannot become negative the two terms of equation (1) must increase in 
the same way. This is only possible if D = d. This argument tells us that after time t l  
the clusters will no longer be fractal, but dense. 

Let us now try to numerically verify the above statements. If we assume that the 
location of t l  is defined through p O E  f-’, we find z = 0.43 which is in fair agreement 
with our prediction z = ( d  - D ) / D .  One consequence of y in equation (2) being a 
scaling variable is that the maximum of n-’ occurs for the same values of R / r  
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Figure 1. n-' as a function of time t for ( a )  po = 0.5102, a = -a, ( b )  po = 0.3333, a = -a 
and (c) po=0.5102, a = -2. The scale of t in (c) is logarithmic. The h e a r  size of the 
system is L = 200 and the data were obtained from averaging over 20 independent samples. 

independent of the initial density po. We have determined A / r  = l + c R / r  ( c ' =  
constant) to be A / r  = 0.026, 0.029 and 0.113 for po= 0.25, 0.33 and 0.51 all for a = -2. 
The agreement between po=0.25 and po=0.33 is good. However for 0.51 the scaling 
regime seems to be too small. In the regimes I and I1 we suggest that the y given in 
equation (2) is also a scaling variable for the cluster mass distribution n,( t, po) which 
is defined as the average number of clusters of mass s found per site: 

n, = T 2 f ( X ,  y )  x = s/s. (3)  
Finally we want to discuss the gelation transition at r2 (where one cluster spans the 
system). Because of the monodispersity in the cluster mass distribution [8] we expect 
f2  to be given by the time when the typical linear cluster size becomes of the order of 
the system size, i.e. 

(4) 
where the exponent l l d  stems from the fact that the clusters are supposed to have 
become compact in regime 11. In figure 2 we show that t l ,  which is defined by the 
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Figure 2. n-' as a function of ( a )  the average cluster mass I excluding the largest cluster 
and ( b )  the mass s,,, of the largest cluster alone for a =-a, po= 0.5102 and for different 
system sizes L. The lines are drawn to guide the eye. The minima 9 and s:ax of each 
curve are plotted in the inset, double logarithmically against L. The slope lies between 1.6 
and 2.0 for ( a )  and between 1.7 and 2.1 for (b) .  Values of L are 70 (V), 100 (0), 140 (0) 
and 200 (0). 

minimum of n-', strongly depends on L. In the inset of figure 2 we try to determine 
the exponent governing this relation and find a value consistent with equation (4). A 
precise determination of the exponent, however, is not easy because the minima of 
figure 2 are quite shallow and the statistical fluctuations are quite strong. The relation 
(4) confirms our previous finding [9] that for the infinite system the gel time is infinite. 
Evidence that the aggregation process in regime I11 behaves differently from regimes 
I and I1 can be seen when plotting the cluster mass distribution. In figure 3 f ( x ,  y )  
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Figure 3. The scaling function f ( x ,  y )  defined in equation (3) is plotted as a function of 
x = s/S for p o  = 0.3333, a = -cc and L = 200 at a time t < t ,  (flocculation) where y << 1 (0) 
( S =  74) and at a time t > t ,  (past the gel point) (0) ( S =  5 5 5 5 ) .  In the flocculation regime 
f ( x ,  y)  is monodisperse (bell shaped) and past the gel point of the finite system f ( x ,  y )  
develops a second peak. 

defined in equation ( 3 )  is plotted as a function of x for t < t l  and for t > t 2 .  In the 
latter case a second peak develops for large values of x = s/F. 

Concluding, we found that at finite initial densities po and finite system sizes L 
clustering of clusters goes through three regimes separated by two crossover times t l  
and f2 with t l  given by p0=  F(D-d)’D and t2 by L E  F-l’d. In particular this means that 
after t l  clusters become compact and that the gel time t2 goes to infinity with L. 

The computations have been performed at the CIRCE in Orsay, France. 
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